
Math Modeling, Week 8
Multilayer neural networks
Like a chain of Rescorla-Wagner networks
Layers 0 through M

Nm nodes at layer m
 Layer 0: input; layer M: output; intermediate: “hidden layers”
 Weights 𝑤"#$ from layer m-1 (node j) to layer m (node i)
 Bias 𝑏"$ for each node, like a weight from constant node
Input to each node

𝑣"$ = 𝑤"#$𝑎#$)* + 𝑏"$
,-./

#0*

 𝐯$ 	= 	W$𝐚$)* 	+ 	𝐛$

Activation (output) of each node
 𝑎"$ = 𝑓789 𝑣"$
 Often sigmoid activation function: 𝑎 = tanh 𝑣 ∈ −1,1 or 𝑎 = logistic 𝑣 = *

*HI.J
= *

K
1 + tanh L

K
∈ 0,1

 Needed to introduce nonlinearity
 Otherwise layers would be redundant: 𝐚N = W$N

$0* 𝐚O + 𝐛N
Universal approximation
 Can match any continuous function 𝐚O ↦ 𝐯N to arbitrary precision, given enough hidden nodes/layers

Back-propagation
Learning algorithm for multilayer networks
Gradient descent on sum-squared error
 𝐸 = *

K
𝑣"N − 𝑅"

K,S
"0*

 Ri is feedback or correct value on output node i
 Update by moving down the gradient: Δ𝑤"#$ = −𝜖 VW

VXYZ
-

One-layer network
 V[

VXZ
= VL

VXZ
⋅ V
VL

*
K
𝑣 − 𝑅 K = 𝑎# ⋅ 𝑣 − 𝑅

 Rescorla-Wagner rule: Δ𝑤# = 𝜖 𝑅 − 𝑣 𝑎#	 prediction error times cue value (aj)
Multilayer network
 V[

VXYZ
- hard to compute directly for early layers m

 Output depends on weight by exponentially many routes through intermediate layers
Recursive solution
 Derivative of error wrt all nodes’ inputs and outputs, using chain rule
 Final layer: VW

VLY
S = 𝑣"N − 𝑅"

 Node output: VW
V]Z

-./ =
VLY

-

V]Z
-./ ⋅

VW
VLY

-
,-
"0* = 𝑤"#$ ⋅ VW

VLY
-

,-
"0*

 Node input (m < M): VW
VLY

- =
V]Y

-

VLY
- ⋅

VW
V]Y

- = 𝑓789^ 𝑣"$ ⋅ VW
V]Y

-

 tanh: 𝑓789^ 𝑣 = sechK 𝑣 = 1 − 𝑎K
 logistic: 𝑓789^ 𝑣 = I.J

*HI.J ` = 𝑎 1 − 𝑎

 Weight: VW
VXYZ

- =
VLY

-

VXYZ
- ⋅

VW
VLY

- = 𝑎#$)* ⋅
VW
VLY

-

 Bias: VW
VaY

- =
VLY

-

VaY
- ⋅

VW
VLY

- =
VW
VLY

-

Algorithm
 Define 𝑑"$ for all nodes, as 𝑑"$ = VW

VLY
-

 Set 𝑑"N = 𝑣"N − 𝑅" (negative prediction error on output layer)
 Inductively set 𝑑#$)* = 𝑓789^ 𝑣#$)* 𝑤"#$𝑑"$

,-
"0* for m = M,…,2

 Update each weight by Δ𝑤"#$ = −𝜖𝑎#$)*	𝑑"$
 Update each bias by Δ𝑏"$ = −𝜖𝑑"$

