Multilayer neural networks
Like a chain of Rescorla-Wagner networks
Layers 0 through M
N_{m} nodes at layer m
Layer 0: input; layer M : output; intermediate: "hidden layers"
Weights $w_{i j}^{m}$ from layer $m-1$ (node j) to layer m (node i)
Bias b_{i}^{m} for each node, like a weight from constant node
Input to each node

$$
\begin{aligned}
& v_{i}^{m}=\sum_{j=1}^{N_{m-1}} w_{i j}^{m} a_{j}^{m-1}+b_{i}^{m} \\
& \mathbf{v}^{m}=\mathrm{W}^{m} \mathbf{a}^{m-1}+\mathbf{b}^{m}
\end{aligned}
$$

Activation (output) of each node

$$
a_{i}^{m}=f_{\mathrm{act}}\left(v_{i}^{m}\right)
$$

Often sigmoid activation function: $a=\tanh (v) \in[-1,1]$ or $a=\operatorname{logistic}(v)=\frac{1}{1+e^{-v}}=\frac{1}{2}\left(1+\tanh \frac{v}{2}\right) \in[0,1]$
Needed to introduce nonlinearity
Otherwise layers would be redundant: $\mathbf{a}^{M}=\left(\prod_{m=1}^{M} \mathrm{~W}^{m}\right) \mathbf{a}^{0}+\tilde{\mathbf{b}}^{M}$
Universal approximation
Can match any continuous function $\mathbf{a}^{0} \mapsto \mathbf{v}^{M}$ to arbitrary precision, given enough hidden nodes/layers

Back-propagation

Learning algorithm for multilayer networks
Gradient descent on sum-squared error
$E=\frac{1}{2} \sum_{i=1}^{N_{M}}\left(v_{i}^{M}-R_{i}\right)^{2}$
R_{i} is feedback or correct value on output node i
Update by moving down the gradient: $\Delta w_{i j}^{m}=-\epsilon \frac{\mathrm{d} E}{\mathrm{~d} w_{i j}^{m}}$
One-layer network
$\frac{\mathrm{dE}}{\mathrm{d} w_{j}}=\frac{\mathrm{d} v}{\mathrm{~d} w_{j}} \cdot \frac{\mathrm{~d}}{\mathrm{~d} v}\left[\frac{1}{2}(v-R)^{2}\right]=a_{j} \cdot(v-R)$
Rescorla-Wagner rule: $\Delta w_{j}=\epsilon(R-v) a_{j} \quad$ prediction error times cue value $\left(a_{j}\right)$
Multilayer network
$\frac{\mathrm{dE}}{\mathrm{d} w_{i j}^{m}}$ hard to compute directly for early layers m
Output depends on weight by exponentially many routes through intermediate layers
Recursive solution
Derivative of error wrt all nodes' inputs and outputs, using chain rule
Final layer: $\frac{\mathrm{d} E}{\mathrm{~d} v_{i}^{M}}=v_{i}^{M}-R_{i}$
Node output: $\frac{\mathrm{d} E}{\mathrm{~d} a_{j}^{m-1}}=\sum_{i=1}^{N_{m}} \frac{\mathrm{~d} v_{i}^{m}}{\mathrm{~d} a_{j}^{m-1}} \cdot \frac{\mathrm{~d} E}{\mathrm{~d} v_{i}^{m}}=\sum_{i=1}^{N_{m}} w_{i j}^{m} \cdot \frac{\mathrm{~d} E}{\mathrm{~d} v_{i}^{m}}$
Node input $(m<M): \frac{\mathrm{d} E}{\mathrm{~d} v_{i}^{m}}=\frac{\mathrm{d} a_{i}^{m}}{\mathrm{~d} v_{i}^{m}} \cdot \frac{\mathrm{~d} E}{\mathrm{~d} a_{i}^{m}}=f_{\text {act }}^{\prime}\left(v_{i}^{m}\right) \cdot \frac{\mathrm{d} E}{\mathrm{~d} a_{i}^{m}}$
$\tanh : f_{\text {act }}^{\prime}(v)=\operatorname{sech}^{2} v=1-a^{2}$
logistic: $f_{\text {act }}^{\prime}(v)=\frac{e^{-v}}{\left(1+e^{-v}\right)^{2}}=a(1-a)$
Weight: $\frac{\mathrm{d} E}{\mathrm{~d} w_{i j}^{m}}=\frac{\mathrm{d} v_{i}^{m}}{\mathrm{~d} w_{i j}^{m}} \cdot \frac{\mathrm{~d} E}{\mathrm{~d} v_{i}^{m}}=a_{j}^{m-1} \cdot \frac{\mathrm{~d} E}{\mathrm{~d} v_{i}^{m}}$
Bias: $\frac{\mathrm{d} E}{\mathrm{~d} b_{i}^{m}}=\frac{\mathrm{d} v_{i}^{m}}{\mathrm{~d} b_{i}^{m}} \cdot \frac{\mathrm{~d} E}{\mathrm{~d} v_{i}^{m}}=\frac{\mathrm{d} E}{\mathrm{~d} v_{i}^{m}}$

Algorithm

Define d_{i}^{m} for all nodes, as $d_{i}^{m}=\frac{\mathrm{d} E}{\mathrm{~d} v_{i}^{m}}$
Set $d_{i}^{M}=v_{i}^{M}-R_{i}$ (negative prediction error on output layer)
Inductively set $d_{j}^{m-1}=f_{\text {act }}^{\prime}\left(v_{j}^{m-1}\right) \sum_{i=1}^{N_{m}} w_{i j}^{m} d_{i}^{m}$ for $m=M, \ldots, 2$
Update each weight by $\Delta w_{i j}^{m}=-\epsilon a_{j}^{m-1} d_{i}^{m}$
Update each bias by $\Delta b_{i}^{m}=-\epsilon d_{i}^{m}$

